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Biological context

RNA-binding proteins are involved in various forms
of RNA metabolism, such as splicing, modification,
stability, and translation (Kenan et al., 1991; Birney
et al., 1993; Nagai et al., 1995). One of the most
well-characterized RNA-binding domains is the RNA-
recognition motif (RRM). Nearly 100 proteins having
one or more RRM have been found in various eukary-
otic organisms (plants, animals, etc). The RRM-type
RNA-binding protein gene (rbpA1) in a cyanobac-
terium, Anabaena variabilis, was discovered (Sato,
1994). The expression of this gene is enhanced at
low temperature (Sato, 1994). This gene was shown
to be a member of a multigene family (Sato, 1995),
and the expressed protein (RbpA1) consists of 102
amino acids, and contains a single RRM domain
and a glycine-rich C-terminal region. RbpA1 exhibits
affinity to poly(U) and poly(G) rather than poly(A)
and poly(C) (Sato, 1995), and this binding mode is
similar to that of plant RNA-binding proteins from
chloroplasts (Ye and Suigiura, 1992) and plant nuclei
(Ludevid et al., 1992). In spite of this sequence speci-
ficity, the target sequence for RbpA1 in vivo remains
unclear. We have proposed that RbpA1 recognizes the
structure of double-stranded RNA, which is generated
from complementary partial sequences in the RNA at
low temperature.
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To examine this proposal and to clarify the func-
tions of the two domains (RRM and glycine-rich
C-terminal region), we have studied the solution struc-
ture of RbpA1 by NMR spectroscopy. We report here
the NMR backbone assignments of RbpA1.

Methods and results

In minimal medium (Miller) containing15NH4Cl
(0.5 g/l) and [13C6]-D-glucose (3 g/l), RbpA1 was ex-
pressed inE. coli BL21(DE3)/pLysS cells harboring
a plasmid containing the complete RbpA1 sequence.
The majority of RbpA1 was expressed in the solu-
ble fraction, with a yield of approximately 6 mg/l.
The purified RbpA1 was obtained by a two-step pro-
tocol on HiTrap-Q strong anion exchange (5 ml;
Pharmacia) and HiLoad Superdex75pg gel filtration
(26 mm× 60 cm; Pharmacia) columns. N-terminal
amino acid sequence analysis of the purified RbpA1
showed that the N-terminal methionine residue was
deleted. The size of the purified RbpA1 was de-
termined by TOF-MASS spectroscopy and sedimen-
tation equilibrium analyses, and it was found that
RbpA1 is a monomeric 11 kDa protein. A 0.5 mM
NMR sample of RbpA1 was prepared in 250µl of
90% H2O/10% D2O or 99% D2O in the following
NMR buffer: 50 mM K2HPO4/KH2PO4, 50 mM KCl,
1 mM DTT, 1 mM EDTA, pH 6.9. 2D1H-15N HSQC
and 3D HSQC-NOESY (1H-15N and 1H-13C), 1H-
15N HSQC-TOCSY, CBCA(CO)NH, HNCACB, and
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Figure 1. Two-dimensional HSQC spectrum of RbpA1 (0.5 mM, NMR buffer, pH 6.9, 30◦C) collected at a1H resonance frequency of
500 MHz. To optimize the resolution in the nitrogen dimension, a15N spectral width of 1500 Hz was used (128 (t1)× 512 (t2) complex points;
and spectral widths of 1500 and 8000 Hz inF1 andF2, respectively). The cross-peak assignments denoted by asterisks are the side-chain
resonances of Asn, Gln and Trp.

HCCH-TOCSY data were collected at 30◦C using
Bruker DMX 500, DRX 600 and DRX 800 spec-
trometers. The data were processed using NMRPipe
(Delaglio et al., 1995) on SGI Indigo and O2 work-
stations. The1H, 13C, and15N chemical shifts were
referenced according to the method of Wishart et al.
(1995).

Extent of assignments and data deposition

Figure 1 shows a 2D HSQC spectrum of RbpA1 ob-
tained at a1H resonance frequency of 500 MHz. The
1HN resonances in Figure 1 were assigned primarily
using the HNCACB and CBCA(CO)NH data in con-
junction with the amide-to-amide region of the1H-15N
HSQC-NOESY data. Using these assignments, the
13CO and Hα resonances were determined from the
results of the HNCO, HCACO and HCCH-TOCSY
experiments. All pairs of cross peaks for the side-
chain resonances (Asn and Gln) in Figure 1 could be
unambiguously assigned.

In total, 96 of 96 possible1HN resonances (102
residues minus four prolines, one methionine and
the terminal amino group) were observed (100%). A
list of the chemical shifts has been deposited in the
BioMagResBank (accession number 4711). On the

basis of these backbone assignments for RbpA1, 3D
structure calculation is in progress.
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